skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rafizadeh, Neema"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report experimental evidence that MoSe2 and WS2 allow the formation of type-I and type-II interfaces, according to the thickness of the former. Heterostructure samples are obtained by stacking a monolayer WS2 flake on top of a MoSe2 flake that contains regions of thickness from one to four layers. Photoluminescence spectroscopy and transient absorption measurements reveal a type-II interface in the regions of monolayer MoSe2 in contact with monolayer WS2. In other regions of the heterostructure formed by multilayer MoSe2 and monolayer WS2, features of type-I interface are observed, including the absence of charge transfer and dominance of intralayer excitons in MoSe2. The coexistence of type-I and type-II interfaces in a single heterostructure offers opportunities to design sophisticated two-dimensional materials with finely controlled photocarrier behaviors. 
    more » « less
    Free, publicly-accessible full text available January 27, 2026